

# Model: BPA-RT3800-Series Single or 3 Phase Input

The **BPA-RT3800-Series** are a highly reliable, 3800W, AC to DC, redundant power supply module. With 180 - 528 VAC in single phase, 3 phase Delta and 3 phase Y inputs. These power supply modules achieve the highest performance and efficiency by incorporating digital control interleaved PFC and phase-shift full bridge technology. The BPA-RT3800 family also includes PMBus<sup>TM</sup> interface to monitor and control all essential functions of the power supply module.

Custom controls available.



- ➤ High efficiency up to 93.0%
- Active Power Factor Correction
- > Dimensions: 203.2 x 40.2 x 292.1 mm. (8.0 x 1.58 x 11.5 in.)
- Wide input voltage range: 180 528VAC
  - Single Phase
  - 3 Phase Delta
  - 3 Phase Y
- Redundant operation
- Adjustable Output Voltages
- Optional fan airflow direction
- Variable fan speed control
- Series and Parallel Wiring Possible
- Fully secure(OTP, OVP, OCP, SCP)
- ➤ LEDs Status :OK, Fault, Warning
- AC OK, DC OK, Alert Signals
- CE Compliant
- RoHS Compliant
- Active Monitoring for Series Operation
- Output Shunt FET Module (Optional)
- PS\_ON (Optional)
- Three Year Warranty
- Approved to EN 60950-1:2006/A11:2009, EN 60950-1:2006/A12:2011, EN60950-1:2006/A1:2010, EN 60950-1:2006/A2:2013, EN60950-1:2006 of the following Safety Standards: UL/cUL, and DEMKO
- > Custom modifications available



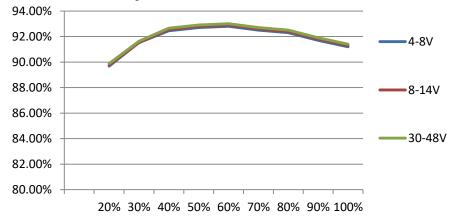
# Output Configurations Available 4-58VDC See Last Page for Ordering Information

| Total<br>Power | Input<br>Voltage | Output<br>Voltage | Minimum | Maximum |
|----------------|------------------|-------------------|---------|---------|
| 3800 W         | 180 -            | VO1               | 0A      | 313A    |
|                | 528VAC           | 528VAC 12VSB      |         | 2.0A    |

Single Phase 200-180VAC Derated 3800-3000W Maximum Input Current 19.5A Maximum Output Current 313A

#### **Applications**

- Battery Charger
- > LED Lighting
- > Routers
- Switches (POE)
- Telecommunication
- Industrial Application




### 1. Input Specifications

| Parame             | eter                   | Description/Condition                        | Min | Nom   | Max  | Units     |
|--------------------|------------------------|----------------------------------------------|-----|-------|------|-----------|
| V <sub>i nom</sub> | Nominal Input Voltage  |                                              | 180 |       | 528  | VAC       |
| I <sub>i max</sub> | Max. Input Current     | V <sub>in</sub> =180VAC/60HZ,Full Load       |     |       | 19.5 | $A_{rms}$ |
| l <sub>i p</sub>   | Inrush Current         | 528V <sub>rms</sub> ,25°C                    |     |       | 32   | $A_p$     |
|                    | Leakage Current        |                                              |     |       | 1.0  | mA        |
| Fi                 | Input Frequency        |                                              | 47  | 50/60 | 63   | Hz        |
| PF                 | Power Factor           | $V_{in}$ =480V/50Hz                          |     | 0.95  |      | W/VA      |
| V <sub>i on</sub>  | Turn-on Voltage        | Ramping Up                                   | 174 |       | 178  | VAC       |
| V <sub>i off</sub> | Turn-off Voltage       | Ramping Down                                 | 160 |       | 170  | VAC       |
| Poweri             | Input Power            | V <sub>in</sub> = 180VAC 3 Phase             |     |       | 4300 | W         |
|                    |                        | $V_{in}$ =480VAC, VO1 /20%Load, $T_A$ =25°C  |     | 90    |      |           |
| η                  | Efficiency without Fan | $V_{in}$ =480VAC, VO1 /50%Load , $T_A$ =25°C |     | 93    |      | %         |
|                    |                        | $V_{in}$ =480VAC, VO1 /100%Load $T_A$ =25°C  |     | 91.5  |      |           |
| $T_{hold}$         | Hold-up Time           |                                              | 16  |       |      | ms        |

- 1.1 Input Fuse Internal 20A input fuses, in series with the input line, protects against severe defects.
- **1.2 Inrush Current** When the power supply module is connected to the main input, it exhibits a low and short peak current due to an X-capacitances initial charge. The internal bulk capacitor is charged through a controlled NTC circuit which will limit the inrush current.
- **1.3 Input Under-Voltage** If the input voltage stays below the specified input voltage range for more than 10 seconds the main output will shut down. The power supply module will automatically return to normal operational condition when the input voltage returns to the specified range.
- **1.4 Power Factor Correction** Power factor correction (PFC) is achieved by controlling the input current waveform synchronous with the input voltage. A fully digital controller is implemented giving outstanding PFC results over wide input voltage and load ranges.

### Efficiency BPA-RT3800-Series 480 VAC



# 2. Output Specifications

| Parame                | eter                     | Description/Condition                                                         | Min  | Nom  | Мах   | Units           |
|-----------------------|--------------------------|-------------------------------------------------------------------------------|------|------|-------|-----------------|
| Main O                | utput V₁                 | •                                                                             |      |      |       |                 |
| $V_{1 \text{ nom}}$   | Nominal Output Voltage   | Varies depending on Output Model selected                                     | 4    |      | 58    | VDC             |
| V <sub>1 set</sub>    | Output Setpoint Accuracy | $0.5 *I_{nom}, T_{amb} = 25 °C$                                               | -0.1 |      | 0.1   | $%V_{1}$        |
| P <sub>1 nom</sub>    | Nominal Output Power     | VO1                                                                           |      |      | 3800  | W               |
| I <sub>1 nom</sub>    | Nominal Output Current   | VO1 (Based on Output Voltage)                                                 | 0    |      | 313   | $A_{DC}$        |
| V <sub>1 pp</sub>     | Output Ripple Voltage    | V <sub>1 nom</sub> , I <sub>1 nom</sub> ,20MHz BW                             |      |      | 1     | $%V_{pp}$       |
| $dV_{1Load}$          | Load Regulation          | $V_1 = V_{1 \text{ nom}}, 0 - 100\% I_{1 \text{ nom}}$                        | -2   |      | .2    | %V              |
| dV <sub>1 Line</sub>  | Line Regulation          | $V_1 = V_{1 \text{ min}} \dots V_{1 \text{ max}}$                             | -0.1 |      | 0.1   | %V              |
| $dV_{1 tot}$          | Total Regulation         | $V_{1min}$ to $V_{1max},0$ to 100% $I_{1nom},T_{amin}$ to $T_{amax}$          | -1   |      | 1     | %V <sub>1</sub> |
| dl <sub>share</sub>   | Current Sharing          | When Bus load ≥ (20%)                                                         | -5   |      | 5     | %A              |
| dl <sub>share</sub>   | Current Sharing          | When Bus load< (20%)                                                          | -10  |      | 10    | %A              |
| $dV_{\text{dyn}} \\$  | Dynamic Load Regulation  | lout:10%60% of full load;50100% of full load                                  | -2.5 |      | 2.5   | %V              |
| T <sub>rec</sub>      | Recovery Time            | $dI_1/dt = 1A/\mu s$ , recovery within 1% of $V_{1 \text{ nom}}$              |      | 0.2  | 1     | ms              |
| t <sub>AC V1</sub>    | Start-up Time from AC    | Varies with Input Line                                                        |      |      | 3.5   | sec             |
| tV <sub>1 rise</sub>  | Rise Time                | V <sub>1</sub> =10%90% V <sub>1nom</sub>                                      |      | 100  |       | ms              |
| $C_Load$              | Capacitive Loading       | T <sub>amb</sub> =25°C                                                        |      |      | ∞     | μF              |
| Standb                | y Output V <sub>SB</sub> |                                                                               |      |      |       |                 |
| $V_{\text{SB nom}}$   | Nominal Output Voltage   | $0.5 \cdot 11_{\text{nom}}, T_{\text{amb}} = 25^{\circ}\text{C}$              |      | 12.0 |       | VDC             |
| $V_{\text{SB set}}$   | Output Setpoint Accuracy | $0.5 \cdot I1_{\text{nom}}, T_{\text{amb}} = 25^{\circ}C$                     | .3   |      | .3    | $V_{SB}$        |
| P <sub>SB nom</sub>   | Nominal Output Power     | V <sub>SB</sub> = 12VDC                                                       |      | 24   |       | W               |
| I <sub>SB nom</sub>   | Nominal Output Current   | V <sub>SB</sub> = 12VDC                                                       |      | 2.0  |       | $A_{DC}$        |
| $V_{SBpp}$            | Output Ripple Voltage    | V <sub>SB</sub> ,I <sub>SB</sub> , 20MHz BW                                   |      |      | 120   | $mV_{pp}$       |
| $dV_{SBtot}$          | Total Regulation         | $V_{imin}$ to $V_{imax},0$ to 100% $I_{1nom},T_{amin}$ to $T_{amax}$          | -3   |      | 3     | $%V_{SB}$       |
| dV <sub>SB</sub>      | Droop                    | 0 - 100% I <sub>SB nom</sub>                                                  |      |      | .3    | V               |
| $dV_{SBdyn} \\$       | Dynamic Load Regulation  | $\Delta I_{SB} = 50\%, I_{SB \text{ nom}}, I_{SB} 5100\% I_{SB \text{ nom}},$ | -0.3 |      | 0.3   | $%V_{SB}$       |
| T <sub>rec</sub>      | Recovery Time            | dI <sub>1</sub> /dt =1A/μs,recovery within 1% of V <sub>SB nom</sub>          |      |      | 1.2   | ms              |
| t <sub>AC VSB</sub>   | Start-up Time from AC    | Varies with Input Line                                                        | 0.2  |      | 1.2   | sec             |
| tV <sub>SB rise</sub> | Rise Time                | V <sub>SB</sub> = 10%90%VSB <sub>nom</sub>                                    |      | 20   |       | ms              |
| $C_Load$              | Capacitive Load          | T <sub>amb</sub> =25°C                                                        |      |      | 10000 | μF              |

**2.1. Output Voltage Ripple** Ripple and noise are measured with  $0.1\mu F$  of ceramic capacitance and  $10~\mu F$  of tantalum capacitance on each of the outputs.

### 3. Protection

| Param                  | eter eter                                  | Description/Condition                   | Min  | Nom | Max  | Units |
|------------------------|--------------------------------------------|-----------------------------------------|------|-----|------|-------|
| F <sub>1,2,3</sub>     | Input Fuses                                | Not user accessible                     |      | 20  |      | Α     |
| V <sub>1 OV</sub>      | Overvoltage Threshold V <sub>1</sub>       |                                         | 110  |     | 120  | %VDC  |
| t <sub>OV V1</sub>     | Overvoltage Latch Off Time V <sub>1</sub>  |                                         |      |     | 1    | ms    |
| V <sub>SB OV</sub>     | Overvoltage Threshold V <sub>SB</sub>      |                                         | 13.2 |     | 14.4 | VDC   |
| t <sub>OV VSB</sub>    | Overvoltage Latch Off Time V <sub>SB</sub> |                                         |      |     | 1    | ms    |
| I <sub>V1 lim</sub>    | Current Limit                              |                                         | 105  |     | 110  | %A    |
| V <sub>1 SC Max</sub>  | Short Circuit Current V <sub>1</sub>       | I nom Depending on Model Selected       |      |     | 200  | %A    |
| t <sub>V1 SC off</sub> | Short Circuit Latch Off Time               | Time to latch off when in short circuit |      |     | 2    | S     |
| T <sub>SD</sub>        | Over Temperature Protection                | Internal temperature                    | 115  |     | 120  | °C    |
|                        | Recovery Temperature                       |                                         |      | 70  |      | °C    |
| I <sub>VSB lim</sub>   | Standby Current Limit                      | Auto Recovery                           |      |     | 3    | Α     |

- **3.1 Overvoltage Protection** The power supply module will shut down if the output voltage exceeds the over voltage threshold. The power supply module must be manually repowered by recycling AC Source, by toggle PS\_ON\*, or PMBus<sup>TM</sup> operation command.
- **3.2 Undervoltage Protection** The power supply module will shutdown if the output voltage falls below undervoltage threshold (90% of VO1 lowest adjustable voltage or 90% of V01 with fixed voltage) for more than 2 second. The power supply module must be manually repowered by recycling AC Source, by toggle PS\_ON\*, or PMBus<sup>TM</sup> operation command.
- **3.3 Overload Protection** Constant current until the undervoltage threshold point (90% of VO1 lowest adjustable voltage or 90% of V01 with fixed voltage). The power supply will turn off when it falls under the undervoltage threshold on the primary output for longer than 2 second. The 12V standby utilizes the hiccup method. The power supply module must be manually repowered by recycling AC Source, by toggle PS\_ON\*, or PMBus<sup>TM</sup> operation command.
- **3.4 Short-circuit Protection** Constant current for 2 second then the main output shut down. The 12V standby utilizes the hiccup method. The power supply module must be manually repowered by recycling AC Source, by toggle PS\_ON\*, or PMBus<sup>TM</sup> operation command.
- **3.5 Over Temperature Protection** The power supply module will shut down if temperature exceeds the over temperature threshold (internal temperature). The power supply module will automatically restart when temperature falls below recovery temperature threshold. The power supply module can also be manually repowered by recycling AC Source, by toggle PS\_ON\*, or PMBus<sup>TM</sup> operation command. \_\_\_\_\_\_

### 4. Safety/Approval

**Parameter Description/Condition** Min Nom Max Units Agency Approvals Approved to the latest edition of the following Approved by standards: UL/cUL 60950-1 independent body IEC/EN 60950-1 Isolation Strength Input(L/N) to case (PE) 2000 Basic Vrms Input (L/N) to output 4000 Reinforced Vrms Output to case (PE) 500 **Functional** VDC VDC **Electrical Strength Test** Input to Case 2828 **VDC** 5656 Input to Output

> Phone: 973-594-1800 Salesteam@BluTekPower.com

\*Can only be repowered by PS ON if selected as an option.

# 5. Electromagnetic Compatibility

### **5.1 Immunity**

| Parameter                         | Description/Condition                                                                                                                                                                                                             | Criterion             |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| ESD Contact Discharge             | IEC/EN61000-4-2, Level 2 ±4kV                                                                                                                                                                                                     | А                     |
| Radiated Electromagnetic Field    | IEC/EN61000-4-3,Level 2 (3V/m) 80-1000MHz, 1.4-2.0GHz,<br>Level 1 (1V/m) 2.0-2.7GHz                                                                                                                                               | A<br>A                |
| Electrical Fast Transients/ Burst | IEC/EN61000-4-4,level 2 AC port ±1kV,1 minute                                                                                                                                                                                     | А                     |
| Surge                             | IEC/EN61000-4-5,<br>Level 2 AC port± 1kV,1 min CM,<br>Level 3 AC port ±2kV,1 min CM                                                                                                                                               | A<br>A                |
| RF Conducted Immunity             | IEC/EN 61000-4-6,Level 2, 3 V,CW,0.15 80MHz<br>Amplitude Modulation 1kHz/80%                                                                                                                                                      | А                     |
| Magnetic Field Immunity           | IEC/EN 61000-4-8,Level 2 3A/m                                                                                                                                                                                                     | Α                     |
| Voltage Dips and Interruptions    | IEC/EN61000-4-11 1.0% residual voltage, 0.5 cycle 2.0% residual voltage, 1 cycle 3.40% residual voltage, 5 cycles 4.70% residual voltage, 0.5 cycle 5.70% residual voltage, 25 cycles/50Hz 6.0% residual voltage, 250 cycles/50Hz | A<br>B<br>B<br>A<br>B |

### **5.2 Emission**

| Parameter           | Description/Condition                          | Criterion |
|---------------------|------------------------------------------------|-----------|
| Conducted Emissions | EN 55022 / EN 55016-2-1 conducted              | Class A   |
| Radiated Emission   | EN 55022 / EN 55016-2-3 radiated               | Class A   |
| Harmonics Emission  | IEC61000-3-2,Vin =230VAC/50Hz,100% Load        | Class A   |
| Acoustical Noise    | 46dB at 1 meter, 25 C , 50% Load               | -         |
| AC Flicker          | IEC61000-3-3,Vin=230VAC/50Hz,100% Load,<20Arms | Pass      |

# 6. Environmental Specifications

| Par            | ameter              | Description/Condition                                          | Min | Nom   | Max | Units |
|----------------|---------------------|----------------------------------------------------------------|-----|-------|-----|-------|
| T <sub>A</sub> | Ambient Temperature | V <sub>i min</sub> to V <sub>i max,I1 nom,ISB nom</sub>        | -20 |       | 70* | °C    |
| Ts             | Storage Temperature | Non- operational                                               | -40 |       | 85  | °C    |
|                | Altitude            | Operational, above Sea Level                                   |     | 5000  |     | Meter |
|                |                     |                                                                |     | 16400 |     | Feet  |
| RH             | Humidity            | Non-condensing                                                 | 5   |       | 95  | %     |
| Na             | Audible Noise       | $V_{i \text{ nom}}$ ,50% $I_{o \text{ nom}}$ , $T_{amb}$ =25°C |     | 42    |     | dBa   |

<sup>\*</sup>Derating linearly from 51° -70°C @50% load.

### 7. Signals and Controls

#### 7.1 Electrical Characteristics

| Parameter            |                                      | Min | Nom  | Мах  | Unit |
|----------------------|--------------------------------------|-----|------|------|------|
| PS_ON(               | Optional)                            |     |      |      |      |
| $V_{IL}$             | Input Low Level Voltage              | 0   |      | 0.8  | V    |
| V <sub>IH</sub>      | Input High Level Voltage             | 2.4 |      | 3.3  | V    |
| $R_{puPS\_ON}$       | Internal Pull Up Resistor on PS_ON   |     | 0    |      | kΩ   |
| AC_OK/               | DC_OK/Alert                          |     |      |      |      |
| V <sub>IL</sub>      | Input Low Level Voltage              | 0   |      | 0.8  | V    |
| $V_{IH}$             | Input High Level Voltage             | 2.4 |      | 3.3  | V    |
| $I_{IL,H}$           | Maximum Input Sink or Source Current | 0   |      | 10   | mΑ   |
| $R_{puAC\_OK}$       | Internal Pull Up Resistor on AC_OK   |     | none |      | kΩ   |
| $R_{puDC\_OK}$       | Internal Pull Up Resistor on DC_OK   |     | none |      | kΩ   |
| R <sub>puAlert</sub> | Internal Pull Up Resistor on Alert   |     | none |      | kΩ   |
| SCL_1/S              | DA_1                                 |     |      |      |      |
| $V_{IL}$             | Input Low Level Voltage              | 0   |      | 0.8  | V    |
| $V_{IH}$             | Input High Level Voltage             | 2.4 |      | 3.3  | V    |
| $I_{IL,H}$           | Maximum Input Sink or Source Current |     |      | 0.25 | mΑ   |
| R <sub>puSCL_1</sub> | Internal Pull Up Resistor on SCL_1   |     | 100  |      | kΩ   |
| R <sub>puSDA_1</sub> | Internal Pull Up Resistor on SDA_1   |     | 100  |      | kΩ   |
| A0/A1                |                                      |     |      |      |      |
| $V_{IL}$             | Input Low Level Voltage              | 0   |      | 0.8  | V    |
| $V_{IH}$             | Input High Level Voltage             | 2.4 |      | 3.3  | V    |
| R <sub>puA0</sub>    | Internal Pull Up Resistor on A0      |     | 100  |      | kΩ   |
| R <sub>puA1</sub>    | Internal Pull Up Resistor on A1      |     | 100  |      | kΩ   |

**7.2 PS\_ON (Optional)** The PS\_ON signal is used to remotely enable/disable the main output V1 of the front-end. This active-low pin is also used to clear any latched fault condition.

**7.3 AC\_OK** The AC\_OK is an open collector signal with an active-high when the AC input voltage is above 178VAC and an active-low when the ac voltage falls outside the requirements for more than 10ms.

**7.4 DC\_OK** The DC\_OK is an open collector signal with an active-high that indicating whether both VSB and V1 outputs are within regulation. This pin is active-low when V1 and VSB are not within regulation.

**7.5 Current Share (VCS)** When used in a redundant configuration, all the current share pins need to be interconnected in order to activate the sharing function. If a supply has an internal fault or is not turned on, the current share line will automatically disengage from the bus.

-If current share is not required the current share pin can be left open.

**7.6 Series\_CS(For Series Connection Current Monitoring)** When signal is interconnected with other supplies in series, in case of a power supply failing, the Series\_CS will turn off other power supplies connected in series if load exceeds 10% over max output current.

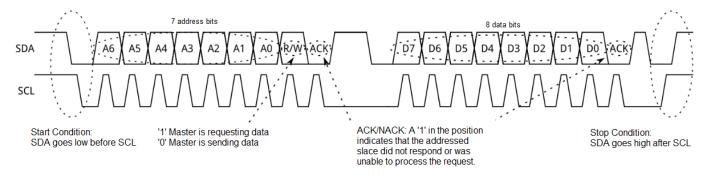
7.7 Remote Sense (+VS and -VS) The main output incorporates sense lines to compensate for voltage drop across the load line.

- 1. (+) Sense connects to the positive rail of the equipment used. Maximum voltage drop of 200mV.
- 2. (-) Sense connects to the negative rail of the equipment used. Maximum voltage drop of 200mV.

If remote sense is not required the (+) Sense and (-) Sense pins can be left open.

**7.8 Alert** Fault/Warning - An open collector signal is provided to indicate any fault or warning such as over temperature, overvoltage, over current, undervoltage, and fan fault.

#### 7.8.1 Front LED

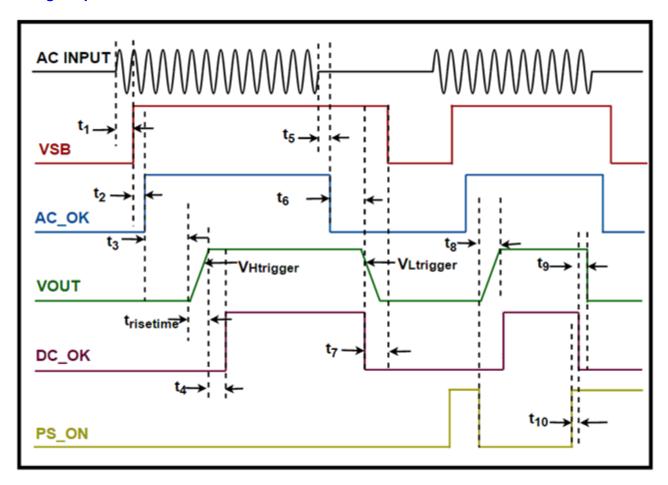

| Power Supply Condition | Alert State | Green LED | Yellow LED | AC_OK | DC_OK |
|------------------------|-------------|-----------|------------|-------|-------|
| Normal Operation       | High        | On        | Off        | High  | High  |
| Standby Mode           | High        | Blink     | Off        | High  | Low   |
| PSU Faults Condition   |             |           |            |       |       |
| Input Undervoltage     | Low*        | Off       | On         | Low   | Low   |
| Output Overvoltage     | Low         | Off       | On         | High  | Low   |
| Fan                    | Low         | Off       | On         | High  | Low   |
| Over Temperature       | Low         | Off       | On         | High  | Low   |
| Output Over Current    | Low         | Off       | On         | High  | Low   |
| PSU Warning Condition  |             |           |            |       |       |
| Over Temperature       | Low         | On        | Blink      | High  | High  |
| Fan Speed(Low Speed)   | Low         | On        | Blink      | High  | High  |
| Output Over Current    | Low         | On        | Blink      | High  | High  |
| Input Undervoltage     | Low         | On        | Blink      | Low   | High  |
| AC below turn on point | Low         | Off       | Blink      | Low   | High  |

See Page 4 (3.Protections) for fault Threshold.
For Faults the power supply module must be manually repowered by recycling AC Source, by toggle PS\_ON, or PMBus<sup>™</sup> operation command.

### 7.8.2 Warnings

| PSU Warning Triggers | Min  | Nom  | Max  | Units |
|----------------------|------|------|------|-------|
| Over Temperature     |      | 115  |      | °C    |
| Fan Speed(Low RPM)   | 2400 | 2500 | 2600 | RPM   |
| Output Over Current  | 102  |      | 105  | %A    |
| Input Undervoltage   |      | 175  |      | VAC   |

**7.9 SDA &SCL** The I2C bus consist of a Serial Clock (SCL) and a Serial Data Line (SDA). Both signals lines are pull up internally to 3.3V bus via 100k ohm resistors, if customer requires stronger pull up resistors, it is possible to install additional pull up resistors in the customer's backplane.




**7.10 Address Select (A0, A1)** These digital input lines are used to set the address of the power supply module. These addresses are used to differentiate between multiple power supply modules utilize in a redundant mode within the same system.

### 7.11 PSU Address Table (Address Bit Settings)

| A0 & A1 | PSU Address Value | A1 | A0 | Recognize Address |
|---------|-------------------|----|----|-------------------|
| 00h     | B0h               | 0  | 0  | Yes               |
| 01h     | B2h               | 0  | 1  | Yes               |
| 02h     | B4h               | 1  | 0  | Yes               |
| 03h     | B6h               | 1  | 1  | Yes               |

### 7.12 Timing Graph



| Parameter             |                           | Description/Condition                      | Min  | Nom    | Max  | Unit |
|-----------------------|---------------------------|--------------------------------------------|------|--------|------|------|
| t <sub>risetime</sub> | VOUT,0V to VO1            | -                                          | 80   | 100    | 120  | ms   |
| $V_{Htrigger}$        | DCOK(high)                | Varies due to Load                         | 95   | -      | 100  | %V   |
| V <sub>Ltrigger</sub> | DCOK(low)                 | Varies due to Load                         | 90   | -      | 95   | %V   |
| Turn-On               |                           |                                            |      |        |      |      |
| t <sub>1</sub>        | AC INPUT - VSB            | Varies due to Line and Load                | 400  | Varies | 1000 | ms   |
| $t_2$                 | VSB - AC_OK               |                                            | -    | 230    | 300  | ms   |
| t <sub>3</sub>        | AC_OK - VOUT              | Varies due to Line and Load                | .4   |        | 1.5  | S    |
| $t_4$                 | VOUT - DC_OK              |                                            | 100  | -      | 150  | ms   |
| t <sub>8</sub>        | PS_ON(low) - VOUT         | PS_ON Turn-On                              | .8   | -      | 1.5  | S    |
| Turn-Off              |                           |                                            |      |        |      |      |
| t <sub>5</sub>        | AC INPUT - AC_OK          | AC IN Turn-Off                             | 14.8 | -      | -    | ms   |
| t <sub>6</sub>        | AC_OK - DC_OK             | AC IN Turn-Off<br>Varies due to Load       | 3    | -      | -    | ms   |
| t <sub>7</sub>        | DC_OK - VSB               | AC IN Turn-Off Varies due to Line and Load | 66   | -      | -    | ms   |
| t <sub>9</sub>        | DC_OK - VOUT              | PS_ON Turn-Off                             | 400  | 440    | 480  | μs   |
| t <sub>10</sub>       | PS_ON(high ) - DC_OK(low) | PS_ON Turn-Off                             | -    | 10     | -    | ms   |

# 7.13 PMBus<sup>™</sup> Functionality Supported By PSU (PMBus <sup>™</sup> Info)

| Address | Commands         | Description                                                                                                                                                                                                                          | Supported | Transaction-<br>Type | Byte_Size |
|---------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|-----------|
| 01h     | Operation_ON_OFF | Used to enable or disable the output of the PSU depending value of the second byte that follows.                                                                                                                                     | Y         | Read/Write           | 2-bytes   |
| 03h     | Clear_Fault      | Used to clear all status registers and error flags. This command also affects the SMB_ALERT signal.                                                                                                                                  | Y         | Write Only           | 1-byte    |
| 19h     | Capability       | Used by the end user system to query the PSU, to determine if it supports certain features, or not. Features such packet error checking, SMB_ALERT and the max SMBUS clock rate.                                                     | Y         | Read Only            | 1-byte    |
| 20h     | VOUT_Mode        | Sets/reads the formats (Linear, VID, and Direct) and exponents for VOUT related commands.                                                                                                                                            | Y         | Read Only            | 1-byte    |
| 3Bh     | Fan_Command_1    | Used by the end user system to override the fan speed versus temperature algorithm of the PSU, so that the system can set the fan speed to where ever it requires within the limits of the fan specification.                        | Y         | Read/Write           | 2-bytes   |
| 78h     | Status_Byte      | Used to retrieve and report one byte containing a summary of the most critical faults. All bits in this register should read as zero when the PSU is operating normally.                                                             | Y         | Read/Write           | 1-byte    |
| 79h     | Status_Word      | Used to retrieve and report two bytes containing a summary of faults conditions. All bits in this register should read as zero when the PSU is operating normally. This register acts as on index to all the other status registers. | Y         | Read/Write           | 2-bytes   |
| 7Ah     | Status_VOUT      | Used to retrieve and report the status of the output voltages. It reports information such as output undervoltage, output over-voltage, output undervoltage-warning                                                                  | Y         | Read/Write           | 1-byte    |
| 7Bh     | Status_IOUT      | Used to retrieve and report the status of the device output current. It relays information, such as output over current conditions, exceeded and output current approaching it maximum rating.                                       | Y         | Read/Write           | 1-byte    |
| 7Ch     | Status_INPUT     | Used to retrieve and report the status of the device input. It relays information, such as input over current, input over power, input OVP rating exceeded and input current approaching it maximum rating.                          | Y         | Read/Write           | 1-byte    |

# 7.13 PMBus<sup>TM Functionality</sup> Supported By PSU (PMBus <sup>TM</sup> Info) - Continued

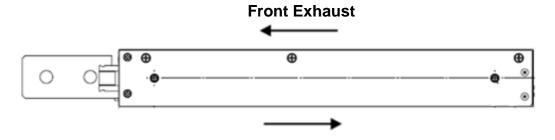
| Address | Commands           | Description                                                                                                                                                                                                                                                                                                                                | Supported                            | Transaction-<br>Type | Byte_Size |
|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|-----------|
| 7Dh     | Status_Temperature | Used to retrieve and report the status of the device operating temperatures both ambient and heat-sinks.                                                                                                                                                                                                                                   | of the device operating temperatures |                      | 1-byte    |
| 7Eh     | Status_CML         | Used to retrieve and report the status of the I2C or SMBUS communication bus; error such as packet error checking (PEC), receive an unsupported command etc                                                                                                                                                                                | Y                                    | Read/Write           | 1-byte    |
| 81h     | Status_Fans_1&2    | Used to retrieve and report the operating status of fan_1 & 2.                                                                                                                                                                                                                                                                             | Υ                                    | Read/Write           | 1-byte    |
| 88h     | Read_VIN           | Used to retrieve a two bytes value in Little Endian format representing the active input voltage of the device in a linear format (VIN = Y*2^n), where n is the exponent in two's compliment represented by the five most significant bits of the upper byte. Y is the mantissa represented the eleven lower bits of the two byte word.    | Y                                    | Read Only            | 2-bytes   |
| 89h     | Read_IIN           | Used to retrieve a two bytes value in Little Endian format representing the active input current of the device in a linear format (IIN = Y*2^n), where n is the exponent in two's compliment represented by the five most significant bits of the upper byte. Y is the mantissa represented the eleven lower bits of the two byte word.    | Y                                    | Read Only            | 2-bytes   |
| 8Bh     | Read_VOUT          | Used to retrieve a two bytes value in Little Endian format representing the active output voltage of the device in a linear format (VOUT = Y*2°), VOUT is a special case where the mantissa and the exponent are not combined, but listed separately.                                                                                      | Y                                    | Read Only            | 2-bytes   |
| 8Ch     | Read_IOUT          | Used to retrieve a two bytes value in Little Endian format representing the active output current of the device in a linear format (I_OUT = Y*2^n), where n is the exponent in two's compliment represented by the five most significant bits of the upper byte. Y is the mantissa represented the eleven lower bits of the two byte word. | Y                                    | Read Only            | 2-bytes   |

# 7.13 PMBus<sup>™</sup> Functionality Supported By PSU (PMBus <sup>™</sup> Info) - Continued

| Address | Commands           | Description                                                                                                                                                                                                                                                                                                                                                      | Supported | Transaction-<br>Type | Byte_Size |
|---------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|-----------|
| 8Dh     | Read_Temperature_1 | Used to retrieve a two bytes value in Little Endian format representing the air intake ambient temperature of the device in a linear format (Temp_1 = Y*2^n), where n is the exponent in two's compliment format, represented by the five most significant bits of the upper byte. Y is the mantissa represented by the eleven lower bits of the two byte word.  | Y         | Read Only            | 2-bytes   |
| 8Eh     | Read_Temperature_2 | Used to retrieve a two bytes value in Little Endian format representing the air exhaust ambient temperature of the device in a linear format (Temp_2 = Y*2^n), where n is the exponent in two's compliment format, represented by the five most significant bits of the upper byte. Y is the mantissa represented by the eleven lower bits of the two byte word. | Y         | Read Only            | 2-bytes   |
| DAh     | Read_Temperature_3 | Used to retrieve a two bytes value in Little Endian format representing the heat-sink temperature of the device in a linear format (Temp_3 = Y*2^n), where n is the exponent in two's compliment format, represented by the five most significant bits of the upper byte. Y is the mantissa represented by the eleven lower bits of the two byte word.           | Y         | Read Only            | 2-bytes   |
| DBh     | Read_Temperature_4 | Used to retrieve a two bytes value in Little Endian format representing the heat-sink temperature of the device in a linear format (Temp_3 = Y*2^n), where n is the exponent in two's compliment format, represented by the five most significant bits of the upper byte. Y is the mantissa represented by the eleven lower bits of the two byte word.           | Y         | Read Only            | 2-bytes   |
| 90h     | Read_Fan_Speed_1   | Used to retrieve a two bytes value in Little Endian format representing the fan_1 speed of the device in a linear format (Fan_Speed_1 = Y*2^n), where n is the exponent in two's compliment format, represented by the five most significant bits of the upper byte. Y is the mantissa represented by the eleven lower bits of the two byte word.                | Y         | Read Only            | 2-bytes   |
| 96h     | Read_POUT          | Used to retrieve a two bytes value in Little Endian format representing the active output power of the device in a linear format (POUT = Y*2^n), where n is the exponent in two's compliment format, represented by the five most significant bits of the upper byte. Y is the mantissa represented by the eleven lower bits of the two byte word.               | Y         | Read Only            | 2-bytes   |

# 7.13 PMBus<sup>™</sup> Functionality Supported By PSU (PMBus <sup>™</sup> Info) - Continued

| Address | Commands                      | Description                                                                                                                                                                                                                                                                                                                              | Supported | Transaction-<br>Type | Byte_Size                      |
|---------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|--------------------------------|
| 97h     | Read_PIN                      | Used to retrieve a two bytes value in Little Endian format representing the active input power of the device in a linear format (PIN = Y*2^n), where n is the exponent in two's compliment represented by the five most significant bits of the upper byte. Y is the mantissa represented by the eleven lower bits of the two byte word. | Y         | Read Only            | 2-bytes                        |
| 98h     | PMBus <sup>TM</sup> _Revision | Used to set and retrieve the version of the PMBus <sup>TM</sup> specification, with which the PSU is in compliance.                                                                                                                                                                                                                      | Y         | Read Only            | 1-byte                         |
| 9Ah     | MFR_Model                     | Used to set and retrieve the manufacturer's model number assign to the device.                                                                                                                                                                                                                                                           | Y         | Read/Write           | Variable plus 1-byte count     |
| 9Bh     | MFR_Revision                  | Used to set and retrieve the manufacturer's revision of the device.                                                                                                                                                                                                                                                                      | Y         | Read/Write           | 1-byte                         |
| 9Ch     | MFR_Location                  | Used to set and retrieve the location of manufacturing of the device.                                                                                                                                                                                                                                                                    | Y         | Read/Write           | Variable plus 1-byte count     |
| 9Dh     | MFR_Date                      | Used to set and retrieve the date of manufacturing of the device.                                                                                                                                                                                                                                                                        | Y         | Read/Write           | 4-bytes<br>plus 1byte<br>count |
| 9Eh     | MFR_Serial                    | Used to set and retrieve the value of the manufacturer's serial number assigned to the device.                                                                                                                                                                                                                                           | Y         | Read/Write           | Variable plus 1-byte count     |
| A0h     | MFR_VIN_MIN                   | Used to retrieve the value of the minimum rated input voltage, that the PSU can be operated.                                                                                                                                                                                                                                             | Y         | Read Only            | 2-bytes                        |
| A1h     | MFR_VIN_MAX                   | Used to retrieve the value of the maximum rated input voltage, that the PSU can be operated safely.                                                                                                                                                                                                                                      | Y         | Read Only            | 2-bytes                        |
| A2h     | MFR_IIN_MAX                   | Used to retrieve the value of the maximum rated input current in Amps, that the PSU can be operated.                                                                                                                                                                                                                                     | Y         | Read Only            | 2-bytes                        |
| A3h     | MFR_PIN_MAX                   | Used to retrieve the value of the maximum rated output power in Watts, that the PSU can be operated.                                                                                                                                                                                                                                     | Y         | Read Only            | 2-bytes                        |
| A4h     | MFR_VOUT_MIN                  | Used to retrieve the value of the minimum rated output voltage that the PSU can provide.                                                                                                                                                                                                                                                 | Y         | Read Only            | 2-bytes                        |
| A5h     | MFR_VOUT_MAX                  | Used to retrieve the value of the maximum rated output voltage that the PSU can provide.                                                                                                                                                                                                                                                 | Y         | Read Only            | 2-bytes                        |
| A6h     | MFR_IOUT_MAX                  | Used to retrieve the value of the maximum rated output current in Amps, that the PSU is expected to provide.                                                                                                                                                                                                                             | Y         | Read Only            | 2-bytes                        |
| A7h     | MFR_POUT_MAX                  | Used to retrieve the value of the maximum rated output power in Watts, that the PSU is expected provide.                                                                                                                                                                                                                                 | Y         | Read Only            | 2-bytes                        |
| A8h     | MFR_TAMBIENT_MAX              | Used to retrieve the value of the maximum ambient temperature that the PSU can be operated, in degree Celsius.                                                                                                                                                                                                                           | Y         | Read Only            | 2-bytes                        |
| A9h     | MFR_TAMBIENT_MIN              | Used to retrieve the value of the minimum ambient temperature that the PSU can be operated, in degree Celsius.                                                                                                                                                                                                                           | Y         | Read Only            | 2-bytes                        |


# 8. PMBus<sup>™</sup> Monitoring

| Paran               | neter              | Description/Condition                                 | Min  | Nom | Max  | Units |
|---------------------|--------------------|-------------------------------------------------------|------|-----|------|-------|
| V <sub>i mon</sub>  | Input RMS Voltage  | $V_{i \text{ min}} \leq V_{i} \leq V_{i \text{ max}}$ | -3.5 |     | 3.5  | %     |
| I <sub>i mon</sub>  | Input RMS Current  |                                                       | -2   |     | 2    | %     |
| P <sub>i mon</sub>  | True Input Power   |                                                       | -4   |     | 4    | %     |
| V <sub>1 mon</sub>  | V1 Voltage         |                                                       | -0.5 |     | 0.5  | %     |
| I <sub>1 mon</sub>  | V1 Current         |                                                       | -2   |     | -2   | %     |
| P <sub>o nom</sub>  | Total Output Power |                                                       | -1.5 |     | -1.5 | %     |
| V <sub>SB mon</sub> | Standby Voltage    |                                                       | -1   |     | 1    | %     |
| I <sub>SB mon</sub> | Standby Current    |                                                       | -2   |     | 2    | %     |
| t <sub>1</sub>      | Temperature1       | Intake                                                | -2   |     | 2    | °C    |
| t <sub>2</sub>      | Temperature2       | Exhaust                                               | -2   |     | 2    | °C    |
| t <sub>3</sub>      | Temperature3       | Primary Section                                       | -2   |     | 2    | °C    |
| t <sub>4</sub>      | Temperature4       | Secondary Section                                     | -2   |     | 2    | °C    |
| Fs                  | Fan Speed          | Measurement Accuracy                                  | -5   |     | 5    | %     |
|                     | Fan Speed          | Control Range(0-23000RPM)                             | 0    |     | 100  | %     |

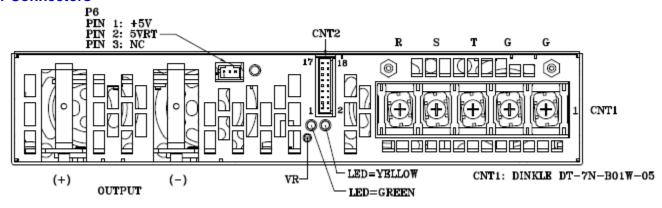
### 9. Fan Speed & Direction

| Fan Speed                                                                                                                         | RPM       |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------|
| Nominal Fan Speed (Fan will start to speed up when the internal power supply module temperature exceeds 50°C or exceeds 30% Load) | 8000 RPM  |
| Maximum Fan Speed (Fan will reach its maximum speed of 23000 RPM when the internal power supply module temperature reaches 80°C.) | 23000 RPM |
| Minimum Warning Fan Speed                                                                                                         | 2500 RPM  |

**9.1 Fan Airflow** To achieve best cooling results sufficient airflow through the supply must be maintained. Do not block or obstruct the airflow on either side of the power supply.



#### **Rear Exhaust**


Normal (Front Exhaust) and reverse (Rear Exhaust) airflow options are available. See ordering Information for details.

### 10. Connection

**10.1 Connectors** 

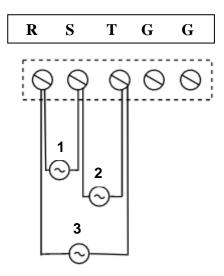
Input Connector: CNT1
Signal Connector: CNT2

Main Output Connector: Bus Bar (+) (-) (Optional) Output Shunt FET Module: P6



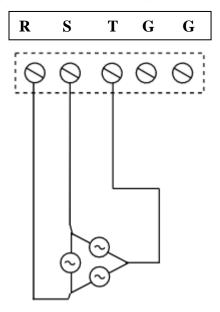
| Pins             | Pin Type                    | Assignment          | Description/Function                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|-----------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output           |                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                         |
| BusBar(+)        | Power                       | VO1_PWR             | These are the +VO1 voltage output pins.                                                                                                                                                                                                                                                                                                                                                                 |
| BusBar(-)        | Power                       | VO1_RTN             | These are the –VO1 return output pins.                                                                                                                                                                                                                                                                                                                                                                  |
| Control          |                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                         |
| CNT2-1           | Signal                      | VO1S(+)             | (+) Sense - If remote sense is required this pin must be connected to the +VO1 load on the system backplane. This pin can be left open if remote sense is not required.                                                                                                                                                                                                                                 |
| CNT2-2           | Signal                      | VO1S(-)             | (-) Sense - If remote sense is required this pin must be connected to the VO1 return on the system backplane. This pin can be left open if remote sense is not required.                                                                                                                                                                                                                                |
| CNT2-3<br>CNT2-4 | Signal                      | VCS                 | Current Share - This pin must be connected to the 8V current share of the redundant power supplies on the system backplane. This pin can be left open if current share is not required.                                                                                                                                                                                                                 |
| CNT2-7           | Signal<br>House<br>Keeping  | 12VSB               | 12V Stand by - This is the 12V standby output voltage pin.                                                                                                                                                                                                                                                                                                                                              |
| CNT2-9           | Signal                      | Series _CS          | For Series Connection Current Monitoring- When Signal pin is interconnected with other supply in series .In case of a power supply failing, this pin will turn off other power supply in series if load exceeds 10% max current.                                                                                                                                                                        |
| CNT2-8           | Signal                      | PS_ON<br>(Optional) | Power Supply On - This is the power supply module control pin. This pin must be directly connected to common or controlled by a transistor connected to common on the system backplane.                                                                                                                                                                                                                 |
| CNT2-17          | Signal                      | COM                 | Common - This is the common return pin for the power supply module.                                                                                                                                                                                                                                                                                                                                     |
| CNT2-12          | Signal<br>Open<br>Collector | DC_OK               | DC Okay - This pin is used to monitor the output voltage. The signal on this pin will go high 100 to 150mSecs after the output voltage has reached regulation (above 95%). This signal will go low when the output voltage drops out of regulation (below 90%). This pin must be connected to an external voltage via pull up resistor on the system backplane 20V max 10mA max.                        |
| CNT2-10          | Signal<br>Open<br>Collector | ALERT               | Fault/Warning - An open collector signal is provided to indicate any fault or warning such as over temperature, overvoltage, over current, undervoltage, and fan fault.                                                                                                                                                                                                                                 |
| CNT2-14          | Signal<br>Open<br>Collector | AC_OK               | AC Okay - This pin is used to monitor the AC input voltage. The signal on this pin will go high when the AC input voltage is above 178VAC. When the AC input voltage drops below 174VAC this signal will go low a minimum of 10mSec before the output voltage drops out of regulation. This pin must be connected to an external voltage via pull up resistor on the system backplane 20V max 10mA max. |
| CNT2-16          | Signal                      | SDA_1               | Communication Data pin.                                                                                                                                                                                                                                                                                                                                                                                 |
| CNT2-18          | Signal                      | SCL_1               | Communication Clock pin.                                                                                                                                                                                                                                                                                                                                                                                |
| CNT2-11          | Signal                      | A0                  | Address Pin-This pin operates at 3.3V internal pulled up by a 100k $\Omega$ resistor.                                                                                                                                                                                                                                                                                                                   |
| CNT2-13          | Signal                      | A1                  | Address Pin-This pin operates at 3.3V internal pulled up by a 100k $\Omega$ resistor.                                                                                                                                                                                                                                                                                                                   |
| CNT2-15          | Signal                      | A2                  | Address Pin-This pin operates at 3.3V internal pulled up by a 100k $\Omega$ resistor.                                                                                                                                                                                                                                                                                                                   |

### **10.2 Input Configurations**


### 10.2.1 Single Phase Connection

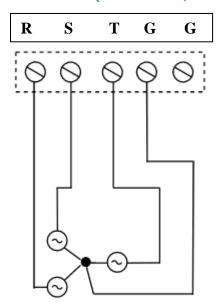
Input Connector CNT1 (180-528VAC, 47-63Hz)

For single phase, connect the AC source in one of the 3 different configurations. 1. R to S  $\,$ 


2. S to T

3. R to T

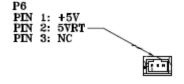



### 10.2.2 3 Phase Delta Connection

### Input Connector CNT1 (180-528VAC, 47-63H)

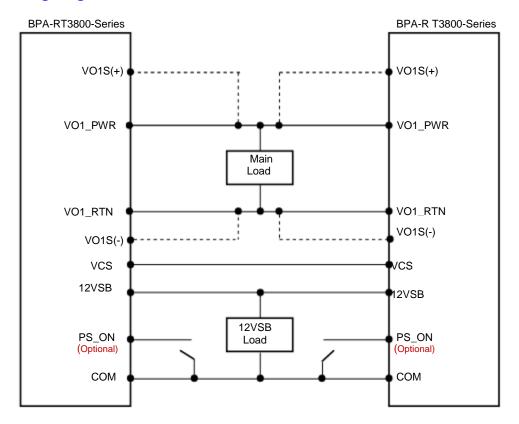


### 10.2.3 3 Phase Y Connection

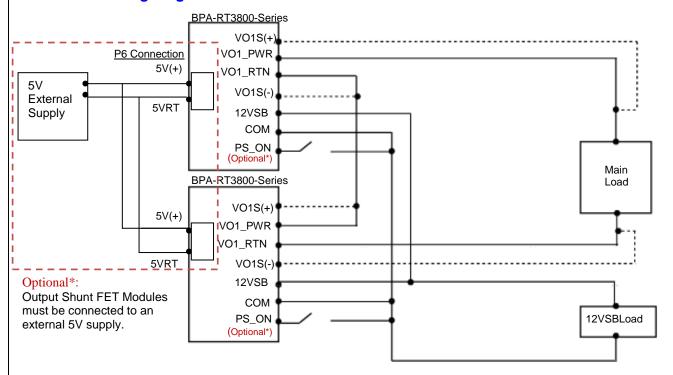

### Input Connector CNT1 (180-528VAC, 47-63H)



### (Optional) Output Shunt FET Module: P6


5V external supply is required to power FET module, which is used to shunt main output in case of a failure or lost of AC Power.

| Pin   | Pin Type | Description/Function |
|-------|----------|----------------------|
| Pin1  | Power    | +5V                  |
| Pin 2 | Power    | 5VRT                 |
| Pin3  | NC       | No Connection        |

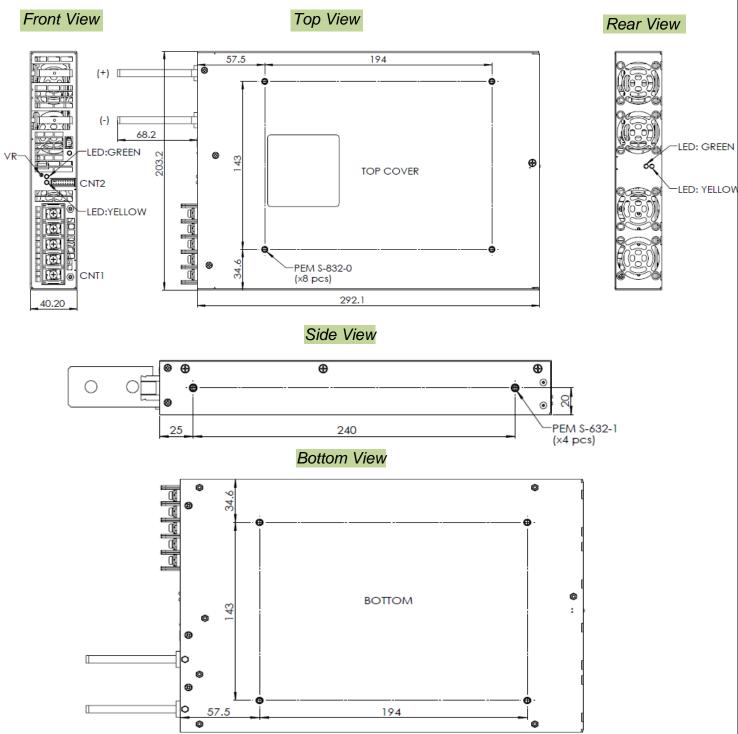



### **10.3 Parallel Wiring Diagram**

Dash lines show remote sense connections.

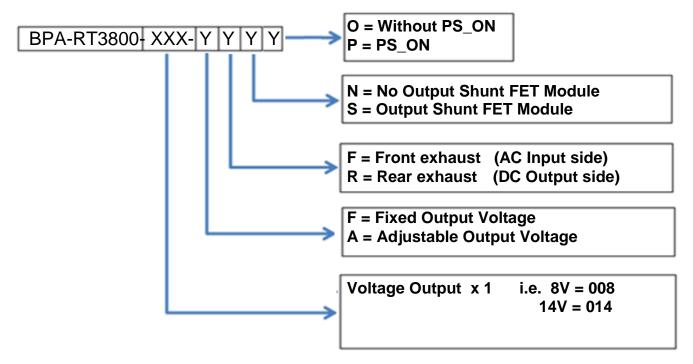


### 10.4 Series Wiring Diagram




When operating in series the current share pin must be left open.

<sup>\*</sup>See Ordering Information on last page.


### 11. Mechanical

| Parameter | Description/Condition | Min | Nom         | Max | Units   |
|-----------|-----------------------|-----|-------------|-----|---------|
|           | Width                 |     | 203.2 (8)   |     |         |
| Dimension | Height                |     | 40.2(1.58)  |     | mm(in)  |
|           | Depth                 |     | 292.1(11.5) |     |         |
| Weight    |                       |     | 0.7(1.5)    |     | Kg(lbs) |



### 12. Ordering Information

### Model number matrix for BPA-RT3800-XXX-YYY



**Technical Revisions** – The appearance of products, including safety agency certification pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

Custom Modifications and Voltages are Available

### MODEL No. / OUTPUT VOLTAGE / CURRENT RATINGS CHART

| Model No.      | O/P Voltage (VDC) | Minimum | Maximum | Vout Adjust. |
|----------------|-------------------|---------|---------|--------------|
| BPA-RT3800-080 | 8V                | 0A      | 313A    | 4-8.8VDC     |
|                | 12VSB             | 0A      | 2.0A    | -            |
| BPA-RT3800-140 | 14V               | 0A      | 271A    | 8-14.6VDC    |
|                | 12VSB             | 0A      | 2.0A    | -            |
| BPA-RT3800-480 | 48V               | 0A      | 79A     | 36-58VDC     |
|                | 12VSB             | 0A      | 2.0A    | -            |

#### Contact Info:

Address: 300-1 Route 17 South Suite B2 Lodi, NJ 07644 USA

Phone: 973-594-1800

Email: Salesteam@BluTekPower.com

For more information on these products please contact a BluTek Sale Representative.